Uncertainty Analysis in Using Markov Chain Model to Predict Roof Life Cycle Performance

نویسندگان

  • Yan Zhang
  • Godfried Augenbroe
  • Brani Vidakovic
چکیده

Making decisions on building maintenance policies is an important topic in facility management. To evaluate different maintenance policies and make rational selection, both performance and maintenance cost of building components need to be of concern. For roofing sytem Markov Chain model has been developed to simulate the stochastic degrading process to evaluate the life cycle perfornance and cost. [Van Winden and Dekker 1998; Lounis et al. 1999] Taking value in a discrete state space, this model is especially appropriate when scaled rating regular inspections and related mainteance policies are implemented in large organizations. [Van Winden and Dekker 1998] However, many parameters in this Markov Chain model are associated with variance of significant magnitude. The propagation of these variances through the model will result in uncertainties in predicted life cycle performance and cost results. Without a solid uncertainty analysis on the simulation, decisions based on these simulation results can be unrealiable. In this paper we provide methods to estimate the range of parameter values and represent them in a probabilistic framwork. Monte Carlo method is used to analyze simulation output (life cycle cost and performance) variance propagated from these parameters through the model. These probablisitc informnation can be used to make better informed decisions. An example is provided to illustrate the Markov Chain model development, parameter identification method, Monte-Carlo uncertainty assessment and decision making with probabilistic information. It is shown that the uncertainty propagating through this process is not negligible and may significantly influence or even change the final decision

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing location, routing and inventory decisions in an integrated supply chain network under uncertainty

This study extends a mathematical model that integrates the location, allocation, inventory replenishment and routing decisions simultaneously. To cope with inherent uncertainty of parameters, we implement a continuous-time Markov process and derive the performance measures of the system. Using the obtained results, the problem is formulated as a mixed integer nonlinear programing model (MINLP)...

متن کامل

Application of Markov-Chain Analysis and Stirred Tanks in Series Model in Mathematical Modeling of Impinging Streams Dryers

In spite of the fact that the principles of impinging stream reactors have been developed for more than half a century, the performance analysis of such devices, from the viewpoint of the mathematical modeling, has not been investigated extensively. In this study two mathematical models were proposed to describe particulate matter drying in tangential impinging stream dryers. The models were de...

متن کامل

Integration of SimWeight and Markov Chain to Predict Land Use of Lavasanat Basin

Production and prediction of land-use/land cover changes (LULCC) map are among the significant issues regarding input of many environmental and hydrological models. Among various introduced methods, similarity-weighted instance-based machine learning algorithm (SimWeight) and Markov-chain with lower complexity and proper performnce are frequently used. The main aim of this study is utilizing Si...

متن کامل

Analysis of the Spell of Rainy Days in Lake Urmia Basin using Markov Chain Model

In this study, the Frequency and the spell of rainy days was analyzed in Lake Uremia Basin using Markov chain model. For this purpose, the daily precipitation data of 7 synoptic stations in Lake Uremia basin were used for the period 1995- 2014. The daily precipitation data at each station were classified into the wet and dry state and the fitness of first order Markov chain on data series was e...

متن کامل

Markov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives

In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005